
Breadth First Search on APEnet+

Enrico Mastrostefano1 Massimo Bernaschi2 Mauro Bisson2

Davide Rossetti (for the APEnet coll.)3

1Sapienza Università di Roma
2Istituto per le Applicazioni del Calcolo, IAC-CNR, Rome, Italy

3APE group, INFN Roma, Italy

IA3 Workshop on Irregular Applications: Architectures & Algorithms
– SC12 – Nov. 11 2012

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 1 / 36

Outline

1 Workload: distributed BFS on large graphs

2 Platform: 3D Torus interconnect, support for GPU peer-to-peer

3 Results: on 4-8 nodes with APEnet+

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 2 / 36

Rationale

From the Workshop web site:
Many data intensive scientific applications are by nature
irregular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irregular applications on them demands
a substantial effort, and often leads to poor performance.

The solutions needed to address these challenges can only come
by considering the problem from all perspectives: from micro- to
system-architectures. . . from algorithm design to data
characteristics.
Only collaborative efforts among researchers with different
expertise, including end users, domain experts, and computer
scientists, could lead to significant breakthroughs.
We (clearly :) match them all, You’ll see . . .

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 3 / 36

Rationale

From the Workshop web site:
Many data intensive scientific applications are by nature
irregular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irregular applications on them demands
a substantial effort, and often leads to poor performance.
The solutions needed to address these challenges can only come
by considering the problem from all perspectives: from micro- to
system-architectures. . . from algorithm design to data
characteristics.

Only collaborative efforts among researchers with different
expertise, including end users, domain experts, and computer
scientists, could lead to significant breakthroughs.
We (clearly :) match them all, You’ll see . . .

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 3 / 36

Rationale

From the Workshop web site:
Many data intensive scientific applications are by nature
irregular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irregular applications on them demands
a substantial effort, and often leads to poor performance.
The solutions needed to address these challenges can only come
by considering the problem from all perspectives: from micro- to
system-architectures. . . from algorithm design to data
characteristics.
Only collaborative efforts among researchers with different
expertise, including end users, domain experts, and computer
scientists, could lead to significant breakthroughs.

We (clearly :) match them all, You’ll see . . .

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 3 / 36

Rationale

From the Workshop web site:
Many data intensive scientific applications are by nature
irregular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irregular applications on them demands
a substantial effort, and often leads to poor performance.
The solutions needed to address these challenges can only come
by considering the problem from all perspectives: from micro- to
system-architectures. . . from algorithm design to data
characteristics.
Only collaborative efforts among researchers with different
expertise, including end users, domain experts, and computer
scientists, could lead to significant breakthroughs.
We (clearly :) match them all, You’ll see . . .

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 3 / 36

Large Graphs

Large scale networks are often represented as large graphs with
having up to billions of edges
Power-law degree distribution

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 4 / 36

High performance graph algorithms

Most of graph algorithms have low arithmetic
intensity and irregular memory access
patterns

How do modern architectures perform
running such algorithms?
Several graph-theoretical challenges:
DIMACS9, SCA#2, Graph 500

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 5 / 36

High performance graph algorithms

Most of graph algorithms have low arithmetic
intensity and irregular memory access
patterns
How do modern architectures perform
running such algorithms?

Several graph-theoretical challenges:
DIMACS9, SCA#2, Graph 500

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 5 / 36

High performance graph algorithms

Most of graph algorithms have low arithmetic
intensity and irregular memory access
patterns
How do modern architectures perform
running such algorithms?
Several graph-theoretical challenges:
DIMACS9, SCA#2, Graph 500

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 5 / 36

Overview

Distributed Breadth First Search (BFS)
Implementation for GPU clusters
Programming paradigm: CUDA + MPI
Developed according to the Graph 500 specifications.
Performance metric: Traversed Edges Per Second (TEPS)

GPU1 GPU2 GPUn

MPI

Generator

Build data
structure

BFS

parent array
TEPS

G500 Steps

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 6 / 36

Distributed data structure

Edge list
Edge list with: < V >= 2SCALE ; < M >= 16 ∗ 2SCALE

Each task generates a subset of the edge list in the form: (U0,V0), (U1,V1), ...

Edges are assigned to processes via a simple rule:
edge (Ui ,Vj) ∈ Pk if Ui mod #P == k

Compressed Sparse Row (CSR) data structure
CSR is simple and has minimal memory requirements

u1 u2 u3 u4

0 3 18

un

Ml

0

3

3

7 7 7 7

7 l M. . .

Vj Vk Vl Vt

local
vertices

offset
array

adj. list

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 7 / 36

Straightforward implementation of BFS on a cluster of
GPUs

Data mapping
Each vertex Ui of QBFS is
assigned to one thread ti
Each thread ti visits all the
neighbors Vj of its vertex

GPU-related issues
Threads workloads are
unbalanced
Memory access patterns can
be irregular

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

1

0L10L2

2

Algorithm rely on atomic (add) operations.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 8 / 36

Straightforward BFS: Results

(B
ill

io
n
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7-

Straightfwd BFS

(infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)
Weak scaling plot

number of processes

G500 Reference BFS

Poor TEPS scaling

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 9 / 36

Straightforward BFS: Issues

Communication-related issues
Multiple copies of the same vertex are sent

V0V0 V1V1 V7 V3 V2 V9 V7 V0
Array of
Neighbors

neighbors of U3 neighbors of U7

Processor 1

Processor 2

Processor k

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 10 / 36

Issues and Solutions

We used one thread for each vertex in the queue. |Q| = k
.... |Neighbors| = m. We want to use as many threads as the
number of neighbors

Neighbors of vertices in the queue are not-contiguous in the
Adjacency list array...
...We want a contiguous array of neighbors

We send/recv multiple copies...
...We want to prune the array that we send

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 11 / 36

Beyond the straightforward BFS: Sort-Unique BFS

1 Build an array of offsets and compute the total number of
neighbors, say m

2 Start m threads, map threads to neighbors and build a contiguous
array of neighbors

3 With m threads prune the contiguous array of neighbors
4 Exchange vertices with other processes and update the parent

array

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 12 / 36

Sort-Unique BFS
Recipe #1: build the new offset and compute the total number of
neighbors

Start k threads, each element of
QBFS is assigned to one thread

Build Qdeg , by substituting each
vertex with its degree

Perform a prefix-sum operation
on Qdeg to build the New Offset
array (by using the Thrust library)

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

The last element of New Offset is: m =
∑

i∈QBFS
di

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 13 / 36

Sort-Unique BFS
Recipe #1: build the new offset and compute the total number of
neighbors

Start k threads, each element of
QBFS is assigned to one thread

Build Qdeg , by substituting each
vertex with its degree

Perform a prefix-sum operation
on Qdeg to build the New Offset
array (by using the Thrust library)

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

The last element of New Offset is: m =
∑

i∈QBFS
di

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 13 / 36

Sort-Unique BFS
Recipe #1: build the new offset and compute the total number of
neighbors

Start k threads, each element of
QBFS is assigned to one thread

Build Qdeg , by substituting each
vertex with its degree

Perform a prefix-sum operation
on Qdeg to build the New Offset
array (by using the Thrust library)

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

The last element of New Offset is: m =
∑

i∈QBFS
di

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 13 / 36

Sort-Unique BFS
Recipe #1: build the new offset and compute the total number of
neighbors

Start k threads, each element of
QBFS is assigned to one thread

Build Qdeg , by substituting each
vertex with its degree

Perform a prefix-sum operation
on Qdeg to build the New Offset
array (by using the Thrust library)

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offj

QBFS U3 U7 U21 U16 Ui Uj

1 2 3 4 k-1 k

Qdeg d3 d7 d21 d16 di dj

prefix-sum

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

The last element of New Offset is: m =
∑

i∈QBFS
di

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 13 / 36

Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

Start m threads

Each thread performs a binary
search on New Offset and finds
its index

Each thread reads from the Adj
list the element corresponding to
the index

and write it in the Next Level
Frontier Set (NLFS).

1 m

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

Next
level
frontier

Vi Vk

0m

Vi Vk

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 14 / 36

Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

Start m threads

Each thread performs a binary
search on New Offset and finds
its index

Each thread reads from the Adj
list the element corresponding to
the index

and write it in the Next Level
Frontier Set (NLFS).

1 m1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

Next
level
frontier

Vi Vk

0m

Vi Vk

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 14 / 36

Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

Start m threads

Each thread performs a binary
search on New Offset and finds
its index

Each thread reads from the Adj
list the element corresponding to
the index

and write it in the Next Level
Frontier Set (NLFS).

1 m1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

Next
level
frontier

Vi Vk

0m

Vi Vk

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 14 / 36

Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

Start m threads

Each thread performs a binary
search on New Offset and finds
its index

Each thread reads from the Adj
list the element corresponding to
the index

and write it in the Next Level
Frontier Set (NLFS).

1 m1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

1 m

Binary Search

{Id1, Id2, ..., Idm}

New
Off

off3 off7 off21 off16 offi offjoff3 off7 off21 off16 offi m

Adj
list

Vi Vk Vs

Id1 Idk Idm

0.M

Next
level
frontier

Vi Vk

0m

Vi Vk

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 14 / 36

Sort-Unique BFS
Recipe #3: prune the Next Level Frontier Set

Start m threads

Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

and compact it to n unique
elements

1 m

1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

Vi Vk

0n

Compact
array

Unique ratio m
n ∼ 20

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 15 / 36

Sort-Unique BFS
Recipe #3: prune the Next Level Frontier Set

Start m threads

Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

and compact it to n unique
elements

1 m1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

Vi Vk

0n

Compact
array

Unique ratio m
n ∼ 20

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 15 / 36

Sort-Unique BFS
Recipe #3: prune the Next Level Frontier Set

Start m threads

Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

and compact it to n unique
elements

1 m1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

Vi Vk

0n

Compact
array

Unique ratio m
n ∼ 20

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 15 / 36

Sort-Unique BFS
Recipe #3: prune the Next Level Frontier Set

Start m threads

Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

and compact it to n unique
elements

1 m1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

1 m

Sort - Unique
Compact

Vi Vk

0m

VpVp VpVp

Vi Vk

0n

Compact
array

Unique ratio m
n ∼ 20

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 15 / 36

Sort-Unique BFS: communication and enqueue
Recipe #4: Exchange vertices and update the parent array

Start n threads

Substitute vertices with tasks

Sort by process id (by using
the Thrust library)

Exchange non-local edges

Update the parent array and
Enqueue

1

Vi Vk

0n

Compact
array

n

P0

0n

Procs
array

P1 P0 P2 P1 P2 P1 Ps

P0

0n

Procs
sorted

P0 P1 P1 P1 P2 P2 Ps

MPI - Exchange

Enqueue

If QBFS == 0 quit.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 16 / 36

Sort-Unique BFS: Results

(B
ill

io
n
)

Straightfwd BFS
Sort-Unique BFS

(infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)
Weak scaling plot, Kernel 2

number of processes

G500 Reference BFS

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 17 / 36

Sort-Unique BFS: weak scaling analysis

Time spent in computation is almost constant
Time spent in communication increases with NP

Sort-Unique cuts ' 90% of vertices

SCALE NP kernels time mpi time NLFS NLFS-after-SU

21 1 0.68 0.0 37,651,259 1,043,789
22 2 0.85 0.1 37,906,934 1,678,486
23 4 0.85 0.4 37,739,872 2,688,755
24 8 0.85 0.5 58,416,610 4,502,903
25 16 0.9 0.6 45,334,918 5,519,616
26 32 0.95 0.7 58,863,642 8,703,456
27 64 1.01 0.9 42,174,869 9,316,248

NOTE: figures are for third-level of BFS.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 18 / 36

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 19 / 36

Platform: APEnet+ test setup

8-nodes setup

dual-socket Westmere Xeon
servers

2D Torus 4x2x1 topology

one/two NVIDIA Fermi 2050
GPUs per node

GPU ECC OFF

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 20 / 36

APEnet+ card

FPGA based (Altera Stratix
IV)

3D Torus, 6 bidirectional
links up to 34 Gbps raw

PCIe X8 Gen2 in X16 slot
(peak BW 4+4 GB/s)

Network Processor,
off-loading engine integrated
on FPGA

Zero-copy RDMA host
interface

Direct GPU peer-to-peer
logic

Industry standard QSFP+
cabling (copper & optical)

SO-DIMM DDR3

mini-USB

X+

X-

Y+

Y- Z-

Z+

Gbit Ethernet
External Power

Gbit EthernetProgrammable
DevicePCI-e connectorQSFP+ Connectors

Figure : APEnet+ card, front view

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 21 / 36

Data exchange between GPUs

(In general) GPUs cannot exchange data directly
Data staging on host memory represents a bottleneck on
multi-GPUs systems
NVIDIA Fermi GPUs introduced HW support for peer-to-peer
(P2P) over PCIexpress
SW support present since CUDA 4.0

Figure : Data exchange between
GPUs before CUDA 4.0

Figure : Direct memory copy between
GPUs enabled by CUDA 4.0

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 22 / 36

Data exchange with 3rd party devices

CUDA 4.1, unofficial P2P support for 3rd party devices
APEnet+ is 1st (only?) non-NVIDIA device to support the P2P HW
protocol, directly across PCIexpress
CUDA 5.0, 3rd party access via BAR1 for Kepler

Figure : Standard interconnects, data
staging on host memory

Figure : Direct P2P data transfer of
GPUs data to/from APEnet+ across
the PCIexpress bus

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 23 / 36

A possible confusion . . .

GPU-aware MPI, ever heard of them ?
OSU MVAPICH2 and OpenMPI (SVN trunk)
hide data staging on host memory, i.e. MPI Send and MPI recv
accept GPU memory pointers.
rely on NVIDIA UVA

Useful but not GPU peer-to-peer with interconnect

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 24 / 36

Results: BFS on APEnet+

OpenMPI/IB using MPI Send/Recv

APEnet+ using native RDMA PUT (needs padding)

Traversed Edges Per Second,
Strong Scaling, |V | = 220

NP INFINIBAND APENET
1 6.2× 107 6.2× 107

2 7.8× 107 1.0× 108

4 8.2× 107 1.3× 108

8 2.0× 108 ?

Traversed Edges Per Second, Weak Scaling,
|V | = 2SCALE

NP SCALE MPI/IB APEnet+
1 19 5.6× 107 6.0× 107

2 20 7.9× 107 1.0× 108

4 21 1.1× 108 1.5× 108

8 22 2.7× 108 ?

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 25 / 36

APEnet+ vs. MPI/IB

Breakdown of running times, |V|=2^20

APENET

cudaMemcpycudaMemcpy
apenet

INFINIBAND

Figure : Execution time breakdown, SCALE = 20, Np = 4, on one process
among four.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 26 / 36

Network pattern

all-to-all communication

msg size, rise and fall

sharp peak at level 3

eg. for Np = 4 and SCALE = 20:

level 1
src=0 dest=1 len=64
src=0 dest=2 len=64
src=0 dest=3 len=64

level 2
src=1 dest=0 len=588
src=2 dest=0 len=256
src=3 dest=0 len=268KB
src=0 dest=1 len=576
src=2 dest=1 len=192
src=3 dest=1 len=263KB
src=0 dest=2 len=576
src=1 dest=2 len=5.8KB
src=3 dest=2 len=261KB
src=0 dest=3 len=576
src=1 dest=3 len=5.9KB
src=2 dest=3 len=192

level 3
src=1 dest=0 len=1.0MB
src=2 dest=0 len=1.6MB
src=3 dest=0 len=1.6MB
src=0 dest=1 len=1.6MB
src=2 dest=1 len=1.6MB
src=3 dest=1 len=1.6MB
src=0 dest=2 len=1.6MB
src=1 dest=2 len=1.6MB
src=3 dest=2 len=1.6MB
src=0 dest=3 len=1.6MB
src=1 dest=3 len=1.6MB
src=2 dest=3 len=1.6MB

level 4
src=1 dest=0 len=1MB
src=2 dest=0 len=1MB
src=3 dest=0 len=1MB
src=0 dest=1 len=1MB
src=2 dest=1 len=1MB
src=3 dest=1 len=1MB
src=0 dest=2 len=1MB
src=1 dest=2 len=1MB
src=3 dest=2 len=1MB
src=0 dest=3 len=1MB
src=1 dest=3 len=1MB
src=2 dest=3 len=1MB

level 5
src=1 dest=0 len=128
src=3 dest=0 len=41KB
src=2 dest=0 len=41KB
src=0 dest=1 len=41KB
src=2 dest=1 len=41KB
src=3 dest=1 len=40KB
src=1 dest=2 len=41KB
src=0 dest=2 len=40KB
src=3 dest=2 len=42KB
src=1 dest=3 len=41KB
src=0 dest=3 len=41KB
src=2 dest=3 len=42KB

level 6
src=3 dest=0 len=128
src=2 dest=0 len=128
src=0 dest=1 len=128
src=2 dest=1 len=128
src=3 dest=1 len=128
src=1 dest=2 len=128
src=0 dest=2 len=128
src=3 dest=2 len=128
src=1 dest=3 len=192
src=0 dest=3 len=256
src=2 dest=3 len=128

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 27 / 36

Network pattern
all-to-all communication

msg size, rise and fall

sharp peak at level 3

eg. for Np = 4 and SCALE = 20:

1	 2	 3	 4	 5	 6	 7	
to	 peer	 1	 64	 576	 1622336	 1073792	 41024	 128	 0	

to	 peer	 2	 64	 576	 1628352	 1077504	 40192	 128	 0	

to	 peer	 3	 64	 576	 1627072	 1077440	 41280	 256	 0	

from	 peer	 1	 0	 5888	 1657664	 1072896	 41536	 128	 0	

from	 peer	 2	 0	 256	 1643072	 1080384	 41408	 128	 0	

from	 peer	 3	 0	 268416	 1647680	 1075328	 41728	 128	 0	

1	

1000	

1000000	

m
es
sa
ge
	 si
ze
	 (B

yt
es
)	

data	 exchange	 of	 peer	 0,	 SCALE=20,	 Np=4	

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 28 / 36

understanding the performance difference
using basic network benchmarks as a guide:

2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+
staging in host memory

APEnet+ round-trip latency with GPU peer-to-peer

the MVAPICH2 result on OSU MPI bandwidth test is for reference

 0

 500

 1000

 1500

 2000

 2500

 3000

4M2M1M512K256K128K64K32K16K8K4K2K1K 512 256 128 64

B
an

dw
id

th
 (

M
B

/s
)

Message size (64B-4M)

Effect of P2P on GPU to GPU one-way bandwidth

APEnet+ (Link 28Gbps) vs MVAPICH2 IB (40G)

G-G APEnet+ p2p=ON
G-G APEnet+ p2p=OFF

G-G MVAPICH2 IB w/cuMcpy

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 29 / 36

understanding the performance difference
using basic network benchmarks as a guide:

2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+
staging in host memory

APEnet+ round-trip latency with GPU peer-to-peer

the MVAPICH2 result on OSU MPI bandwidth test is for reference

 0

 5

 10

 15

 20

 25

4K2K1K 512 256 128 64

L
at

en
cy

 (
us

)

Message size (Bytes)

Effect of P2P on GPU to GPU roundtrip latency

APEnet+ (Link 28Gbps) vs MVAPICH2 IB (40G)

G-G APEnet+ p2p=ON
G-G MVAPICH2 IB w/cuMcpy

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 29 / 36

understanding the performance difference
using basic network benchmarks as a guide:

2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+
staging in host memory

APEnet+ round-trip latency with GPU peer-to-peer

the MVAPICH2 result on OSU MPI bandwidth test is for reference

 0

 5

 10

 15

 20

 25

4K2K1K 512 256 128 64

L
at

en
cy

 (
us

)

Message size (Bytes)

Effect of P2P on GPU to GPU roundtrip latency

APEnet+ (Link 28Gbps) vs MVAPICH2 IB (40G)

G-G APEnet+ p2p=ON
G-G MVAPICH2 IB w/cuMcpy

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 29 / 36

Conclusions

Summary
Distributed BFS on multi-GPUs that relies on pruning
Good scaling properties
Up to 3 billions TEPS with 128 GPUs (19 rank in graph500)
APEnet+ 1st attempt at GPU peer-to-peer

Future Work
CUDA streams to overlap computation with communication
P2P among GPUs on the same host
APEnet+ is reconfigurable, space for HW optimizations

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 30 / 36

Backup slides

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 31 / 36

K2: balancing
Cumulative running time, 16 processors

Computations and communications among processes are well
balanced

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 32 / 36

K2: cuda kernels times

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 33 / 36

K2: cuda kernels times

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 33 / 36

K2: cuda kernels times

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

Sum of running time over bfs levels, proc 0 of 64

ti
m

e
 (

se
c)

binary search
sort-unique

mpi allgather

enqueue-local

mpi send/recv

cuda-cpy sendbuff

mpi allreduce

enqueue-received

cuda-cpy recvbuff

Cuda Kernels

Communications

CudaCpy

sort owners

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 33 / 36

References I

Roberto Ammendola, Andrea Biagioni, Ottorino Frezza,
Francesca Lo Cicero, Alessandro Lonardo, Pier Paolucci, Roberto
Petronzio, Davide Rossetti, Andrea Salamon, Gaetano Salina,
Francesco Simula, Nazario Tantalo, Laura Tosoratto, and Piero
Vicini, Apenet+: a 3d toroidal network enabling petaflops scale
lattice qcd simulations on commodity clusters.

Aydin Buluc and Kamesh Madduri, Parallel breadth-first search on
distributed memory systems.

Deepayan Chakrabarti, Deepayan Chakrabarti, Yiping Zhan, and
Christos Faloutsos, R-mat: A recursive model for graph mining, IN
SDM (2004).

Andrew Grimshaw Duane Merrill, Michael Garland, High
performance and scalable gpu graph traversal, Tech. report,
Nvidia, 2011.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 34 / 36

References II

Andy Yoo et al., A scalable distributed parallel breadth-first search
algorithm on bluegene/l, Supercomputing, 2005. Proceedings of
the ACM/IEEE SC 2005 Conference, 2005.

Pawan Harish and P. J. Narayanan, Accelerating large graph
algorithms on the gpu using cuda, 2007, pp. 197–208.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos
Faloutsos, and Zoubin Ghahramani, Kronecker graphs: An
approach to modeling networks, J. Mach. Learn. Res. 11 (2010),
985–1042.

Huiwei Lv, Guangming Tan, Mingyu Chen, and Ninghui Sun,
Understanding parallelism in graph traversal on multi-core clusters,
Computer Science - Research and Development (2012), 1–9.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 35 / 36

References III

Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming (eds.), Accelerating cuda graph
algorithms at maximum warp, 2011.

Brian W. Barrett James A. Ang Richard C. Murphy, Kyle
B. Wheeler, Introducing the graph 500, 2010.

Koji Ueno and Toyotaro Suzumura, Highly scalable graph search
for the graph500 benchmark, Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed
Computing (New York, NY, USA), HPDC ’12, ACM, 2012,
pp. 149–160.

D.Rossetti (INFN) BFS on APEnet+ IA3 Workshop 36 / 36

	Workload: distributed BFS on large graphs
	Platform: 3D Torus interconnect, support for GPU peer-to-peer
	Results: on 4-8 nodes with APEnet+

